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An exact calculation of the autocorrelation function is presented for the dimer deposition-
evaporation model with single particle diffusion in the presence of a bond defect. Different time
regimes are separated by crossover times, which are determined by the interplay between the spatial
and temporal characteristics of the autocorrelation function. For certain choices of the stochastic
rates, localized defect modes can alter the ultimate long-time exponential decay rate of the entire

system.

PACS number(s): 02.50.Ey, 75.10.Dg, 61.72.Ss
I. INTRODUCTION

Stochastic models of various kinds [1,2] have recently
attracted a great deal of attention. Most of the mod-
els so far investigated are perfectly pure systems, which
possess translational symmetry. However, in any real
physical application, such as surface or interface growth
or chemical reactions on surfaces, impurities or defects
are unavoidable. It is our aim here to start to examine
the effect of defects on stochastic processes and to gain
some insight into the stochastic behavior of disordered
systems.

Among the pure stochastic systems currently studied
are stochastical particle hopping models [3], growth mod-
els [4,5], and deposition-evaporation models [6]. For par-
ticular stochastic hopping processes the effect of a single
defect has been recently studied numerically 7] and ana-
lytically [8]. In this paper we treat an impure deposition-
evaporation model which also includes particle hopping.

Specifically, we present an exact calculation of
the autocorrelation function for the dimer deposition-
evaporation models with single particle diffusion in
the presence of a bond defect, over which both the
deposition-evaporation rate and the diffusive hopping
rate can be different from those for the rest of the system.
It turns out that this single defect bond can in general
support two localized bound states. With certain choices
of the stochastic rates, these bound states correspond to
defect modes which are below the bulk energy band and
hence change the intrinsic long-time behavior of the en-
tire system.

II. MASTER EQUATION
AND XXZ SPIN CHAIN

We consider a one-dimensional (1D) lattice on which
the elementary stochastic processes are deposition and
evaporation of dimers with the same rate € and hop-
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ping of single particles to either one of the two nearest
neighbor sites with equal probability h. Since we only
consider the case of single occupancy, the deposition pro-
cess can only occur when the two chosen neighboring
sites are empty or the evaporation when the two sites
are occupied. The hopping process can take place only
if the two chosen sites have one site occupied and the
other empty. Due to this mutual exclusion, at any given
time (or updating step) t, only one of the four above-
mentioned processes can be attempted at any randomly
chosen neighboring—site pair.

The dynamics of this stochastic system can be de-
scribed by the master equation, which governs the time
evolution of the probability P(s,t) of finding the sys-
tem in a certain particle configuration |s) at time t. If
W (s — s') denotes the rate or transition probability per
unit time at which configuration |s) evolves to |s), the

master equa.tion is
Z[W s' — s) P(s,t)

—W(s — §') P(s,t)]. (1)

—Pst

The basis vectors { | s) } form a complete orthonormal
set. The ensemble averaged state vector for the system
at time ¢ can then be defined by

|P() =2 P(s,t)]s). (2)

It is easy to check that the master equation (1) can now
be rewritten as

7]
5 | PO)=-H|P(@)), ®3)

where the transition operator H is defined in terms of its
matrix elements:
s'#s

(s'|H|s)=-W(s—s),

(4)
(s|H|s)=) W(s—s).
8'#s
From Eq. (3) it is clear that the steady state of the system
corresponds to the ground state of the transition operator
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H with zero eigenvalue E; = 0. Any eigenvalues with
positive real part E correspond to decaying states with
lifetime 1/FE. It is also worthwhile to note that every
column of matrix H adds up to zero due to probability
conservation.

It is again convenient to use the analogy between the
present system and quantum spin-% models. Using the
spinors a(n) or B(n) to denote a particle or a vacancy
at site n, the four elementary processes of the stochastic
system under consideration can be described by

ot ot B(n)B(n+1) =a(n)a(n+1)
(with deposition rate €),

Tn Opy1 @(n) a(n +1) = B(n) B(n + 1)
(with evaporation rate ¢),

0n 0541 a(n) B(n+1) = B(n) a(n +1)
(with right hopping rate h),

on 0n41 B(n) a(n + 1) = a(n) B(n + 1)
(with left hopping rate h).

Therefore, the off-diagonal part of the transition opera-
tor, which only connects two different state vectors |s)
and |s') through a single elementary process listed above,
should take the form

D 1) (s | H]|s)(s]

8,8'

=—c Z (ofot  +om0,1)
n

_hz (‘7:-‘7;+1 + ‘7;‘7:+1)
n

Z [“(5 +h)ononi + (e —h)od ‘73{+1] )

n

DN | -

(5)

where the prime denotes the exclusion of s = s’ terms
and 0¥ = (02 +i0¥)/2. From Eq. (4) it is clear that the
diagonal part of the transition operator H counts the
total number of ways in which a configuration |s) can
evolve to different ones |s') through a single elementary
process. In terms of the occupation number operator at
site m, n,, = o} o, = (1+ 0Z%)/2, we can write the
diagonal part of the transition operator as

D ls)(s|H]|s)(s]

=€ Z [Q=nm)(1 = nms1) + nmmea ]
+h Z [Pm (1= 7mi1) + (1= 7om) Nnt1 ]

=%E[2h+(e—h)(1+a,‘,o§,+1)]. (6)
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It is then easy to see that the total tramsition op-
erator H, obtained by combining (5) and (6), can al-
ways be mapped into the “Hamiltonian” of the XXZ
spin—% chain. For example, for the case of ¢ > h, we can
introduce the following sublattice rotations:

(agn’ ag‘n’ a;n) = (-—T2zn7 Tgn’ T;'n. ) ’
(7)
(U§n+1’ 0'12’,"_'_1, 0;n+1) = (_T21n+1’ _72yn+17 —T;n-f-l )’

which leads to
1
H=- 5(5 —h) z :[T: Ty + YT

+1+A) ], (8)

where A = 2h/(e — h) > 0. Hence the ground states are
the two ferromagnetically aligned configurations: | F' )
with all spins up and | F')_ with all spins down in the 7
representation.

III. STEADY STATES
AND THE AUTOCORRELATION FUNCTION

Since any physical state must have definite parity (with
either even or odd number of particles in the original
particle or o representation), it can be shown [9] that
the two physical and normalized steady states are the
linear combinations of the above two configurations:

V2
2
for systems with even (upper sign) or odd (lower sign)
number of particles. Here and in the rest of this paper,
any state in Dirac’s bra-ket notation are understood to

be in the 7 representation.
The main purpose of this paper is to study the long
time behavior of the autocorrelation function in the pres-

ence of isolated defects. The autocorrelation function is
defined by

Cn,m(t)E(S|n,,e_thm|S)
—(8[na|S)(S|nm|S), (10)

|S2)==-(|F)+ £|F)-) (9)

where the steady state |S) is either of the two states
in (9), depending on the parity of the system’s initial
configuration. The particle number operator at a given
site m can be rewritten in terms of 7 operators: n,, =
(1+02)/2=(1%712)/2= (%7} +7,)/2 for m being
an even (upper sign) or an odd (lower sign) integer. This
gives immediately

mmlS2) = 318) 4 (1™ Y2 (m)y 2 m) ),

(11)

where | m )+ denotes the state with a single spin flipped
at site m in the otherwise all-spin-up background and
|m)_ that in the all-spin-down background. Using (8)
it is also easy to check the following relation:
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Hln)s=2(c+h)|n)s
~e-m(Int ) +|n-1)z),  (12)

which means that an operation of H (or function of H)
on a single-spin-flipped state will only produce a single-
spin-flipped state(s). This enables us to obtain readily,
from (10) and (11),

Cam(®) = 3 (™™ (n]e 4 |m),  (13)

where the state |n) can be either one of the two intro-
duced in (11) and the above expression is also indepen-
dent of the choice between | Sy ) and [S_).

IV. GREEN’S FUNCTION AND DEFECT MODES

For a system with translational invariance as described
in (8) and (12), the autocorrelation function (10) can be
calculated analytically by Fourier transformation. How-
ever, in the presence of defects, it is convenient to make
use of the two-point Green’s function, which is defined as

Gum (E) = (n|(E - H) ' |m). (14)

The relation between the Green’s function and the auto-
correlation function can be derived by inserting the com-
plete orthonormal set of eigenstates of H into (14) and
using the well-known relation Im1/(z — i0") = w4(z).
It is then not difficult to find that

Cpm (t) = (;mlIm /w Gnm(E—1i0")e EtdE
n,m - 4 e n,m .

(15)

We now proceed to calculate the Green’s function of
the system with a bond defect situated between, say, site
0 and site 1. The site defect case is also interesting
in other contexts, but is not physically relevent for the
present dimer model. If we use ¢* and h* to denote the
deposition-evaporation rate and the hopping rate over
the defect bond, the Hamiltonian equation (12) is then
modified to

H|n) =2(e+h)|n) —(g—h) (|n+1) + |n—1))
+8no (e —h) (uln) = v[n+1))
+ona(e—h)(uln) —v[n-1)),  (16)

where u = (e*—e+h*—h)/(e—h) andv = (¢* —e—h*+

h)/(e—h). It is then clear that the matrix H—ET in the

single-spin-flipped-state representation can be written as

a tridiagonal matrix T, whose inverse is known, plus a

perturbing matrix V|, whose only nonvanishing part is a

2 X 2 submatrix along the main diagonal. From (14) we
obtain formally

GE)=—(T+V)l'=—(I4+TtV)iT?
(17)

where I is the unit matrix. Since the inverse of (I +
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T~!V) can also be analytically obtained (see Appendix
A), we finally have, for bothn and m > 1,

P
(e = h)Grm(E) = p—
xn+m 1 T2 f((E)
- ; 1
z—zl(z—z)(z—z2)’ (18)
and forn > 1 and m <0,
™l (14 v)
—h)Gpm(E) = — , 19
(6= 1) Gum(B) = - T BEELI o)
where both z; and z, are real (given below), and
f@)=ulz+z™h) - 20+ (u+v)(u—0). (20)

The complex z is subject to the normalizability condition
|]z] < 1 and is related to the energy E through the
equation

z+z ' =[2+h)—E]/(c—h). (21)

The continuous bulk energy band corresponds to |z | =
1, with the lower and upper band edges at Ep = 4h (z =
1) and E, = 4¢ (z = —1). The localized energy modes
are determined by the two factors in the Green’s function
denominators in (18) and (19). In the first factor (x—z; ),
which turns out to be independent of h* , we have

23 = 1-2h—€e*)(e+h—2)"1, (22)
E, = Ey—4(h—¢€*)? (e + h—2e*)7". (23)

From the above two equations, it is easy to see that in
order to satisfy both the localization condition |z | < 1
and to have the mode below the bulk band E;, > E,,
which will dominate the long-time behavior of the auto-
correlation, we need to have €* < h. Similarly, in the
second factor (z — z2 ), which is independent of £*, we
have

3 =1-2(h—h*)(e+h—2h")"1, (24)
E, = Ey—4(h—h*)? (e + h—2h")" 1. (25)

This means that the second bound state can be formed
below the bulk band if * < h.

Note that since the spin chain should have ferromag-
netic coupling on every single bond in order to have sta-
ble ferromagnetic ground states (and hence well-defined
steady states), we shall also require that ¢* > h*. There-
fore, in order to have two localized states associated with
the defect below the bulk band, we have to have the fol-
lowing rate ordering:

e>h>e">h", (26)

which then leads to

2(e* — h)(e — h) >0 (27)

T T R 2kt (e+ h—2e%)
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E]_ - Ez = 4(6‘ - h‘)
(e—h*)(h—¢€*)+ (e —€")(h—h*)
T e+ h—2n") (e + h— 2¢%)

> 0.
(28)

Another point worth mentioning is that it is impos-
sible to push any one of the defect energy modes down
to zero because the condition required for having a zero-
energy mode (¢* or h* = veh ) cannot be simultane-
ously satisfied with the localization condition |z; 2| < 1
and E; ; < E; from (22)-(25).

V. LONG-TIME BEHAVIOR AND CROSSOVERS

We now use Eq. (15) and our knowledge of the Green’s
function to calculate the autocorrelation function in the

(_1)n+m—1

Crm (t) = 5

e—2(c+h)t (Iln—m|('r) _

_(21) + v? - ‘U:z)In+m—k—-1(T) })

(_1)n+m T T2

4 1 — T2

+

T1 T2
T — T2

[f(zl) z;t+m—1 e—Elt _ f($2) z;-{—m—-l e—E,t] ,
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steady states. From the relation between F and z in
(21) we realize that the integration over the energy E
can be rewritten as

oo 1 w1
/ dE=—(e—h)/ de T2
—00 —1 T

+2(e — h) / dfsind, (29)
1]

where we have changed the variable z = ¢ in the last
integral. The autocorrelation function given in (15) can
then be obtained analytically. Some details of the calcu-
lation are given in Appendix B, and here we only quote
the results. For bothn and m > 1,

Z (2} — 25 H{ullntm—r(7) + Intm—k—2(7)]
k=1

(30)

where the argument in the modified Bessel function I,,(7) is defined by 7 = 2(¢ — h)t, and f(z;), z;, and E; are
given in (20) and (22)-(25). For n > 1 and m < 0, we have

(_1)n+m 1 T (1 + ’U)

Cn,m (t) = 4 I — T2

oo
k=1

If the stochastic rates satisfy the inequalities (26), the
two bound state energies E; and E, are both below the
lower edge of the bulk energy band Ejp = 4h and will in
turn dominate the long time behavor of the autocorre-
lation functions. However, since |z;| < |z2| < 1, the
exponential decay characteristics, dictated by F; » (E; >
E,), will both be quenched by the spatial factors :1:’1‘;:"'
for earlier times before a crossover time t; is reached.
For t < t,, the autocorrelation function decays also ex-
ponentially but with a faster rate essentially identical to
that for the pure system: t~/2e~Fst (E, > E;). Not
until a second crossover time t, is passed should we ex-
pect to see the intrinsic long time behavior of the auto-
correlation function, which decays as e~ 2t . The second
crossover time ¢; can be easily defined by, for both (30)
and (31),

Inz; —Inz,

t = (Inl + [ml) “p =

(32)

To determine ¢; we use the following asymptotic expan-
sions for the modified Bessel functions:

e’ 4n?2 -1
1 — + -,
vVanrT 87

L(r) ~

((w% —

+ = 2(e+h)t Z (¥ — 28 Iem—i—1(7) — ,._m-k—a(‘l')]) :

1) zvlu—m—3 e—Elt _ (zg _ 1) x;-—m-3 e-—Egt

(31)

[
e 2(eth)t [In+1(7) = Ln—a(T)] ~ —n ‘/g,r—s/z e Bt

The first crossover time ¢; can then be defined by

e"(Be=B1)ti [9(c — h)¢,|7V/2 = gnl¥Im] (33)
for the autocorrelation in (30). For that in (31), ¢; can
be obtained by changing the power —1/2 to —3/2 in the
definition (33). It is physically reasonable that all the
crossover times depend on the total distance of the two
points concerned in the autocorrelation function from the
defect. |n|+|m| is the characteristic length for the defect
to be “felt” by both the points.

VI. DISCUSSIONS

In the preceding section we have mainly considered the
case where both the defect modes lie below the bulk band.
This is indeed the most interesting case since it offers
two crossover times and hence three time regimes for the
autocorrelation function, whose decay characteristics are
determined by different rates in different time regimes.
More importantly, the lowest defect mode determines the
ultimate long-time behavior of the system. However, it is
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still worthwhile to mention that it is possible, with other
choices of the stochastic rates, to have one or both of the
defect modes above the bulk band (E;,2 > E, = 4¢). For
example, we can rewrite (22) and (23) as

Ty =-1+2(e* —¢)(26* —e—~h)7},
=FE, + 4(e* —¢)?(2e* —e — h)7L.

It is easy to see that a localized mode (|z;] < 1) can
appear above the bulk band (E; > E,) ife* > ¢. In
this case z; is again real but negative.

In the pure dimmer model, the case of h = 0 cor-
responds to the isotropic Heisenberg limit of the X X Z
chain. The pure dimer models in one and higher dimen-
sions have recently been studied [6]. Due to the lack of an
energy gap, the systems show a slow power law decay in
their autocorrelation functions. With the introduction of
any isolated bond defects, the only possible defect modes
with finite lifetime are those above the bulk band and
they will not alter the long-time behaviors of the system.

It might seems surprising that a single defect is capable
of changing the intrinsic long-time behavior of the entire
system. This is due to the fact that the system under
investigation is one dimensional. The crucial difference
between 1D systems and higher-dimensional ones is that,
again in the Green’s function language, in 1D the number
of scattering channels is so limited that the number of
those channels passing through the defect can no longer
be considered as only a fraction of order of 1/N of the
total (IV is the total number of sites of the system).

For the corresponding defect systems in higher-
dimensions, it seems difficult to generalize the tridiagonal
matrix method (described in Appendix A). However, a
Green’s function approach in k space can be used instead,
along the line used for solid state defect problems [10].
The full Green’s function is given by the usual Dyson
equation

G(r,r'; E) = Go(r —1'; E)
+ Z Go(r —s; E) V(s,s') G(s',1; E) .

This can be converted to a closed form for G(r,r'; E)
(involving wave-vector sums), using the local character
of V and the fact that Go(r — r’; E) is diagonal in k
space. Although the resulting exact expression for the
full Green’s function is rather difficult to reduce further,
the localized mode energies F; and E, can be calculated
as its isolated poles and are determined by

1+ cosk;

h* —h NZ E(k
1 —cosk1
NZ E, ——E(k

assuming that the bond defect is situated in the k; di-
rection. The dispersion relation is

Z cos k;

with k = (kl,...,kd).

E* —¢€

E(k) =2(e+h)—2(e —h)

Other generalizations of the present defect problem to
models with different deposition and evaporation rates
and/or with different left-hopping and right-hopping
rates are also interesting, but far more difficult to treat
since in these cases we no longer have ferromagnetically
aligned steady states in the quantum spin representation
and the transition operator H is not necessarily Hermi-
tian anymore.
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APPENDIX A

In this appendix we outline the main steps in the cal-
culation of the Green’s function (17) in the site represen-
tion with a bond defect by directly inverting the impure
tridiagonal matrix T + V. Similar calculations for semi-
infinite systems with a site defect is also available [11].
Since the matrix T = Hg — EI is for the pure system,
which is translational invariant, its inverse can be easily
obtained to be

(T aym = (e —h)7' ——

with z given in (21). This enables us to find T™'V,
whose only nonvanishing elements are along the two
columns at m = 0 and m = 1 due to the fact that V has
only four nonvanishing elements. We then partition the
matrix I+ T~V between the tworowsat n =0 and 1,
and the two columns at m = 0 and 1, to write

a1 _ (PP Qi Qe
wervi = (pip) = (3 d) @

where

(’LL — :lt’U) —-n

(Pl)n,m = 5n,m - z——m——l z 50,m y

(PZ)nm = - (zu—v) _n61m7

’ z—zx1 ’ (A3)

v

P = = g,
(u—zv) ,

(Pa)n,m = Onm — Pp— z" b1,m -

Since both P;l and PZI exist and can be obtained with-
out too much difficulty, we write

Q: = (P, — P,P;'P3)7 !,

Q. =P;'P; (PsP{'P, - P,) ",
(A4)
Q; =P,'P; (P,P;'P; - P,) !,

Qi = (Py—P3P{'P,y)7!
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After some tedious but straightforward algebra, all the
matrix elements of the above matrices can be calculated
analytically. Together with (A1), we finally obtain (18)
and (19).

APPENDIX B

The integrals involved in calculating (30) and (31) con-
sist of two types: those along the real axis of =z between
(—1,1) and those along the unit semicircle above the
real axis centered at the origin. The first type can be
easily obtained using the standard residue theory. We
here only show a typical integration of the second type.
To obtain (31) we need to evaluate the following integral,
after putting ¢ = 9,

eine e-—E(O)t (Bl)
(e —z1) (e — z2) '

Im/ df sin @
()}

Since both |z;| and |z2| are less than unity, we can use
the expansion

sin @ e*™®

=) (7 )

sin @ e*?(n—1) [ 1 1 J
= Im - i

- T — T2 1-— .’1716_'.0 1—zqe

> zk—a:" :
=Im E : 1 2 ete(n—l—k) sin@
-
k1 Z1 2

Nad k _ .k
=12—z—1—m2[cos(n—k—2)0
T2

2 k1 Ty —

—cos(n—k)8]. (B2)
Substituting (B2) into (B1) and using the integral repre-
sentation of the modified Bessel function

I.(7) = 1 / e™=**% cosnf df,
T Jo

we obtain the last term in (31). Other integrals can be
worked out in a similar fashion.
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